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16.1 Overview
This lecture covers the following topics:

Distributed Locks: Token Ring Algorithm, Chubby Lock Service

Distributed Transactions: ACID properties, Transaction Primitives, Private Workspace, Write-ahead
logs.

Currency control and locks: Serializability, Optimistic Concurrency Control, Two-phase Locking (2PL),
Timestamp-based Concurrency Control.

16.2 Token Ring Algorithm

Token ring algorithm has its origins in networking; it was used to be an alternative to ethernets for wired
networking. Ethernets use a randomized algorithm to decide when some node gets to send packets on a
shared network, whereas token rings use an approach of having to acquire a lock in order to send a packet.

The locking approach used in token ring is to have a special packet, called a token, that is circulated through
the network. The node that has the token is the only one allowed to access its critical section, similar to
acquring a lock. Each ring has a single token, and each node is allowed to hold the token for a fixed amount
of time. Once the node is done with its operation, or if it does not need the token, it passes it on to its
neighbor in the ring.

Potential issue: if the node holding the token crashes, how does the ring know that the token has disappeared
and needs to be regenerated? In the case where each machine can only hold the token for a fixed amount of
time, we can calculate the number of machines in the network times the maximum time that a machine is
allowed to hold a token to get the maximum time it should take for a token to complete one round through
the network; if it does not return to a node in that time limit we can declare the token as lost. But recreation
of the token has to be done carefully so that only one machine ends up creating the new token and we don’t
end up with multiple tokens in the ring.

Question: Does this approach have the ability to extend the time for which you hold the token for longer
critical sections?

Answer: The original technique was designed for network transmission, so that each node can sends its
packets. If you have a long queue of packets you may want to hold your token for longer, but for fairness
reasons it was decided that you can only hold the token for a certain amount of time. In a generalized
distributed setting, it may not be feasible to hand over the token in the middle of a critical section, in which
case you may have to extend the simple token algorithm scheme to allow for different lengths of critical
sections. However, detecting token loss will then become non-trivial, so that will also have to be dealt with.
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Question: Since detecting token loss requires you to wait for the maximum time you can hold on to a token
times the number of nodes in the network, so does this require that we know the number of nodes in the
network?

Answer: This is true. In IP Addressing we could know that each subnet had at most 255 machines, so it
was possible to upper bound it. You can use other networking approaches to figure out an upper bound to
the number of nodes.

Question: How do you prevent multiple tokens from generating?
Answer: There are many token regeneration techniques that ensure that only one token is generated. For
example, you can elect a leader who is responsible for detecting token loss and regenerating the token.

Comparing the different mutual exclusion algorithms:

In the centralized case there are three messages, one message to go to the lock manager to get the lock, one
that grants the lock and one to release the lock. In the decentralized case because we have to do voting there
are 3mk messages. Token ring is 1 to infinity because you can have an arbitrary sized ring.

Each of these schemes also face plenty of problems. In the centralized case the coordinator may crash, there
may be starvation in decentralized case, in the distributed case any process crashing could take it down,
while in token ring we could have lost tokens or processes crashing.

. Messages per Delay before entry (in
Algorithm entry/exit message times) Problems
Centralized 3 2 Coordinator crash
Decentralized | 3mk 2m starvation
. Crash of any
Distributed 2(n-1) 2(n-1) orocess
: Lost token, process
Token ring 1to Oton-1 crash

Figure 16.1: A comparison of four mutual exclusion algorithms

16.3 Chubby Lock Service

Chubby is a distributed lock service developed by Google. It is designed for coarse-grain locking, i.e. locks
that are held for hours or days at a time rather than fine-grained locks that are usually held for a few seconds.
It is used in large scale distributed systems- hundreds or thousands of machines that have to share some
resources and need a lock on them. The Chubby lock service sits independent of the application and uses
the file system interface for locking and sharing state.

Each cell in a Chubby system comprises around 5 machines. One of the replica machines is placed outside the
data center so that even if all the other machines crash there is a machine that is geographically separated
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and has the state of all the locks.

Example use case: using Chubby for leader election. We declare a lock called the leader lock, and to perform
an election we ask all applications to grab the lock- the first one to do so wins and gets to declare itself the
leader. If the leader wants to gracefully relinquish we can release the lock and rerun the election.

T 5 servers of a Chubby cell
client  chubby Puigsieid

application | library \O :
client E-:huhhy/fro '

application : library : '
client processes i O i

Figure 16.2: Chubby cell architecture

Chubby cell architecture: within a cell of five machines one is elected as the primary and the others are
replicas that can take over if the primary fails. They have a shared database that keeps the state of the lock,
which is internally just files using file locking to implement locking in the cell. The internals of the Chubby
cell are abstracted away from the application, which uses RPCs to ask for and release the lock.

Key ideas:

e we use file locks to implement higher level locks externally
e we have a database that keeps track of the state of each lock

e we highly replicate the lock manager so that even if one fails the other can take over, and at least one
of these five nodes is outside the data center so that even if all of them crash you still have the lock
state somewhere else.

Question: You mentioned the lock can be held for days, so can it support interactive applications?
Answer: This locking manager is not meant for replacing the everyday locks you might have in Java or
Python code used in threaded applications or interactive services. This is meant more for other tasks like
leader elections.

Question: What exactly do we mean by file locks?

Answer: In a file system, in addition to opening a file, reading a file, writing a file, most operating systems
also support file locking. A process can open a file, lock the file, and then read and write to it. If another
process tries to open the locked file it will open, but read or write operations will not succeed. So we are
using a file to represent a lock and using file system locking as a way to carry out locking for the application.

16.4 Transactions

Transactions provide a higher mechanism for atomicity of processing in distributed systems. Atomicity is
when a set of operations is protected with the all or nothing property, i.e., either all of the operations succeed
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or none of them succeed. Anything that is protected by a transaction operates as one atomic operation even
though there may be multiple statements.

Let us try and understand Transactions and their importance using an example. Let us assume there are
two clients, client 1 and client 2, which are trying to make a transaction on bank accounts A, B, C. Client
1 wants to transfer $4 from account A to account B and client 2 wants to transfer $3 from account C to
account B. In the end, $7 needs to be deposited into account B. Let’s assume accounts A, B, C has $100,
$200, $300 respectively initially. To transfer, client 1 needs to read and deduct balance in account A and
then transfer by reading and updating balance in account B. Similarly, client 2 needs to read and deduct
balance in account C and then transfer by reading and updating balance in account B.

Let us say if client 1 and client 2 makes RPC calls to bank’s database to perform their respective operations
at the same time. There are many possible ways all of the operations from client 1 and client 2 could be
interleaved. Figure 16.3 shows one possible interleaving.

Client 1 Client 2
Read A: $100
Write A: $96
Read C: $300
Write C:$297
Read B: $200
Read B: $200
Write B:$203
Write B:$204

Figure 16.3: Depiction of sequence of transactions by two clients

Initially client 1 reads, deducts and updates the balance in A. Next, client 2 reads, deducts and updates the
balance in C. In the next step, client 1 reads balance in account B and then client 2 reads and add $3 to
the balance in account B. But client 1 still has the old value and it adds $4 to old value and updates the
balance in account B by overwriting the changes made by client 2. In the end, only $4 were transferred to
account B instead of $7. This interleaving gave us incorrect result.

Figure 16.4 shows how you want the operations to happen. All of the operations by a particular client
happen like one atomic operation. The order of which client executes first does not matter.

One way to achieve this would be to use a lock on the entire database, so only one of client 1 or 2 can
access the database at a time. The issue with that is it would make all the operations on the database
sequential (i.e. only one client can write to it at a time) but you may have multiple clients sending requests
at the same time, so the performance would degrade significantly. So what we want is for the database to
physically execute concurrently, while logically it seems like it is executing sequentially, which is achieved
through transactions. Transactions essentially allow you to take locks on a set of operations.

16.4.1 ACID Properties

e Atomic: All or nothing. Either all operations succeed or nothing succeeds.
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Client 1 Client 2

Read A: $100

Write A: $96

Read B: $200

Write B:$204
Read C: $300
Write C:$297
Read B: $204
Write B:$207

Figure 16.4: Atomic transactions.

e Consistent: Consistency is when each transaction takes system from one consistent state to another. A
consistent state is a state where everything is correct. After a transaction, the system is still consistent.

e Isolated: A transaction’s changes are not immediately visible to others but once they are visible, they
become visible to the whole world. This is also called the serializable property. This property says
that even if multiple transactions are interleaved, the end result should be same as if one transaction
occurred after another in a serial manner.

e Durable: Once a transaction succeeds or commits, the changes are permanent, but until the transaction
commits, all of the changes made can be reverted.

Question: If there is a rollback in a transaction, at what point can it happen?

Answer: In the example above, client A has four instructions which are together enclosed in a transaction.
You can decide to abort a transaction at any point during the execution, in which case the amounts will
revert to the original value. But once you have committed the transaction then there is no going back and
all the changes become visible.

Question: How are multiple requests (i.e. multiple clients) executing together?
Answer: This will be achieved by something called concurrency control, which we will get to. In brief, we
have to implement finer grain locks- not locks on the whole database but locks on individual records.

16.4.2 Transaction Primitives

Special primitives are required for programming using transactions. Primitives are supplied by the operating
system or by the language runtime system.
e BEGIN_TRANSACTION : Marks the start of transaction.

e END_TRANSACTION : Terminate the transaction and try to commit. Everything between begin
and end primitive will be executed as one atomic set of instructions.

e ABORT_-TRANSACTION : Kill the transaction and undo all of the changes made.
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e READ : Read data from a file, a table, or otherwise.

o WRITE : Write data to a file, a table, or otherwise.

. Nested transaction | Distributed transaction

lSubtransac:tion| ISub‘cransa\n::tion| Subtransaction Subtransaction
] |

U A v B U U
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Airline database [ Hotel database / \
|\ Distributed database |
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Figure 16.5: Nested transactions and distributed transactions.

16.4.3 Distributed Transactions

a) Nested Transaction

Here one transaction is nested inside another. That is, within the BEGIN and END block that denotes one
transaction there is another BEGIN and END block.

Take an example of making a reservation for a trip which includes airline and hotel reservations. Assume
you want to either do both flight and hotel booking or neither. Usually airlines and hotels are different
companies and have their own databases. This can be achieved using nested transactions. This way, if one
booking fails, you undo the changes made for other booking. So, the smaller transactions protects each
booking and the bigger transaction gives ACID properties as a whole. If any one small transaction fails, the
complete transaction is aborted.

b) Distributed Transaction

A transaction is distributed if the operations are being performed on data that is spread across a database
that is distributed (i.e. not on one machine). From user’s perspective, there is only one logical database. So,
to make a transaction on this logical database, we will have subtransactions. Each subtransaction perform
operations on a different machine. Performing operations on distributed database needs distributed lock
which makes implementation difficult.

Question: Is it possible that one transaction is successful in one database and fails in a mirror database?
Answer: A distributed database is one in which data are partitioned into multiple databases instead of one
database being a mirror (exact copy) of the other.
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16.4.4 Implementation

We will see two ways to implement distributed transactions- private work spaces and write-ahead logs. Both
these methods work for both single transaction systems as well as distributed transaction systems.

Private Workspace

Private
o workspace
Criginal R
Index index -
AN —1] o
/2] |

- ¥

——

Free b'lné'l.-.qs

(a) (b) {c)

Figure 16.6: Private workspaces.

e Every transaction gets its own copy of the database to prevent one transaction from overwriting another
transaction’s changes. Instead of a real copy, each transaction is given a snapshot of the database,
which is more efficient. Each transaction makes changes only to its copy and when it commits, all of
the updates are applied to database.

e Making a copy is optimized by using copy-on-write. A copy is not made for read operations.

e Using a copy also makes aborting a transaction easy. If a transaction is aborted, the copy is simply
deleted and no changes are applied to the original database. If a transaction is committed, you just
take the changes and apply them to the database.

In Figure 16.6, the index is used to store the locations of the file blocks. To execute a transaction, instead
of making copies of the file blocks, a copy of the index is made. The index initially points to original file
blocks. For a transaction, it looks like it has its own copy. When the transaction needs to make an update
to block 0, instead of making change to original block, a copy of the block (0') is created and the change is
made to the copy. Now the transaction index is made to point to the copy instead of original. In case the
transaction adds something to the database, a new free block 3’ is created. Essentially, we are optimizing by
making a copy only when a write operation is executed. If the transaction is aborted, the copies are deleted.
If the transaction is committed, the changes made are applied to the original database. This is the private
workspace model.

Question: At any given point in time is there only one transaction being processed?
Answer: That is not the case, we want an arbitrary number of transactions to execute in parallel. Each
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transaction will have its own private workspace- for N transactions we will have N workspaces (and the
original database) where they make their changes.

Question: If two transactions make copies to the same block at the same time what do you do?

Answer: That is called the write-write conflict. Either you have to abort both and restart them or let
one of them succeed. In private workspaces, aborting the workspace is as simple as just discarding the
private workspace index copy that was created. In a transactional system, whenever there are conflicts the
transaction will abort.

Question: Will the index be stored on a single machine or distributed machines?

Answer: At this point we are just looking at a logical view of what is happening. The notion of private
workspace works well if you have a single machine and database or multiple machines and databases. If you
have many machines then you have private workspaces that span multiple disks, but the concepts remain
the same- you use copy and write, with efficient snapshots, and commit if there are no conflicts or discard if
there are.

Question: Is this used in real systems, since there are accounts being changed that will cause issues if they
are discarded?

Answer: We will talk about concurrency control, which is a process by which you let multiple transactions
execute in parallel and yet get safe results. A version of that is called optimistic concurrency control where
you don’t use locks, allow transactions to make changes, and at the point where they are about to commit
check if two transactions have overwritten each other. If they have we declare a write-write conflict and
abort. Most transactions are not modifying the same piece of data, so with high probability will successfully
commit. In the case where you do have multiple transactions frequently modifying the same piece of data then
optimistic concurrency control will lead to many abortions, so we will instead favor pessimistic concurrency
control.

Question: When do you merge the change? Can you merge it while another transaction is ongoing
Answer: Yes, there can be an arbitrary number of transactions ongoing. The only thing we need to know
is when we started executing did someone else also modify the same data items that you did, in which case
you abort.

Question: If two concurrent transactions make changes to their own copy of the same block and if the first
transaction commits, does the second transaction overwrite the changes made by the first transaction?
Answer: If a transaction wants to commit and meanwhile some changes were made to the same block the
transaction wants to commit to, this is a write-write conflict. In this case, the transaction is aborted.

Write-ahead Logs

In this design, the transaction make changes to the live database instead of a copy. We instead keep a
transaction log (called a write-ahead log) to note the changes the transaction is making to the databasae.
Here committing is trivial since the changes are already executed on the live database, but aborts are harder
because we will have to undo the changes by scanning the write-ahead log and undoing each operation listed
to restore the database to where it was before the transaction. The undo process is called a rollback.

Figure 16.7 shows a trivial transaction. The database has only two entries, x and y, initialized to 0. The
transaction has three operations as shown in the figure. After the first operation, and entry with the original
and updated values of x is added to the log. After the second operation, another entry storing the original
and new value of y is added. In the last step, another new entry storing the previous and updated value of x
is added to the log. If the transaction commits, there is nothing to do as the changes were made to original
database. A commit success log is added to undo log in the end. To abort, the log is traversed backwards
reverting each operation by replacing current value with the previous value.
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x=0; Log Log Log
y=0;
BEGIN_TRANSACTION;
X=X+1; x=0/1] x=0/1] [x=0/1]
y=y+2 [y = 0/2] [y = 0/2]
X=y*y; [x = 1/4]
END_TRANSACTION;

(@) (b) (c) (d)

¢ a)A transaction
« b)—d) The log before each statement 1s executed

Figure 16.7: Distributed transactions

Question: If we're already making changes to the database and another transaction comes and modifies
the data how will it be handled?

Answer: When it is time to commit, we have to see if anyone else has modified the changes we did, in which
case we flag a conflict and undo the changes. The transaction system can only do one of two things- either
as you make the changes you take locks from x and y so that no other transaction can modify it (pessimistic
case), or if we don’t hold locks while making changes, we check at commit time if anyone else made changes,
and if so we abort the same thing (optimistic case).

Question: Is the log per transaction or is there one log shared by all?

Answer: The transaction log is a single file. Multiple transactions are going to write to that file, what isn’t
shown here is that each of these entries has to have a transaction ID associated with it, so that when we are
scanning the log back we just look for that ID in order to revert changes.

Question: When you roll back, do you have to scrape out the IDs?
Answer: You don’t have to change the log. The log will have aborted transaction, you just have to undo
what is in the database. You don’t have to delete from the log.

Question: What is the case where the optimistic approach is better?

Answer: The idea behind optimistic approach is that for a large database with millions of records, and any
given transaction will only make changes to a small part of the database. Thus, even if there are many
transactions, if each work on different parts of the database they will rarely conflict.

Question: If C is about to commit and it sees that B has made changes, so you go to abort C, and when
B is about to commit you see it has caused problems with A, how does the abort take place?

Answer: Here you have a case called the cascading rollback, where each abort causes a problem with another
transaction due to a write-write conflict, so both have to termintated, which conflicts with another one and
so on. That is possible, and is a bad case because multiple transactions all get rolled back at the same time.
The only solution here, to avoid many conflicts, is to take locks.

Question: What does “force logs on commit” mean?
Answer: If transaction is committed, a entry is added to the log to indicate that the transaction is successful
and there is no need for undo.



16-10 Lecture 16: April 5

Question: What happens if multiple transactions are operating on x,y in the above example?

Answer: One approach is to use locks. While one transaction is operating, it holds a lock which prevents
any other transaction from making any changes. Another approach is optimistic concurrency control. This
approach does not use locks and assumes that transaction conflicts are rare. Conflicts are tracked and all of
the transactions that are part of the conflict are aborted and restarted again.

16.5 Concurrency Control

The goal of concurrency control is to allow several transactions to execute in parallel. We want to avoid each
transaction taking a lock on the entire database because it would lead to poor performance if many users
want to execute transactions at the same time. Instead, we want all the transactions to execute in parallel
while still achieving consistency. If all the transactions commit successfully, the final result should appear
as if they executed sequentially.

Transactions

READMRITE | Transaction | BEGIN_TRANSACTION

manager END_TRANSACTION

v A
LOCK/RELEASE

Scheduler or
Timestamp operations
v A

Data Execute readfwrite
manager

Figure 16.8: General organization of managers for handling transactions.

Concurrency can be implemented in a layered fashion as shown in Figure 16.8. The transaction manager
implements the private-workspace model or write-ahead log model. The scheduler implements locking and
releasing the data (in this case, we are taking locks of records of the database rather than the entire database).
The data manager makes changes to either the workspace (index) or to the actual database. In the case of
distributed systems, a similar organization of managers is applied as shown in Figure 16.9. Data is now split
across multiple machines. The scheduler needs to handle distributed locking now. Beyond that everything
is same.



Lecture 16: April 5 16-11

* General organization of
\ / managers for handling
y distributed transactions.

Transaction
manager
Scheduler
Data Data Data
manager manager manager

Machine A Machine B Machine C

Scheduler

Figure 16.9: General organization of managers for handling distributed transactions.

16.5.1 Serializability

This the key property that is imposed on the end result of a transaction. The end result of a concurrent
transactions should be same as if the transactions are executed serially. Figure 16.10 shows an example
where each transaction modifies x, and three possible ways the transactions are interleaved. The result
is valid only if it is same as the result of one possible serial orders (1,2,3 or 3,2,1 or 2,3,1 etc). If the
six operations associated with the three transactions (two in each transaction) execute in parallel, we can
obtain any arbitrary interleaving of the six operations. We then check if there is a sequential execution of
transactions that could have produced such an interleaving, in which case it is considered valid.

In the example shown in Figure 16.10, Schedule 1 is valid because the output is same as if the transactions
are executed in the a,b,c serial order. In Schedule 2, we see some interleaving of instructions- x=0 is executed
twice before x=1 and x=2. Here we check the end state, which is that x = 3, and check if there is some
sequential order that would lead to the same end state. Since there is such an order (the same a,b,c order as
Schedule 1), we say that Schedule 2 is also legal. Schedule 3 is illegal, however, because the end state leaves
x as value 5, and there is no sequential execution that could achieve the same end state.

Question: Is the scheduler actually going to simulate this entire process?

Answer: The scheduler is not going to do that. This is just a concept called serializability- if you have
operations executing concurrently, the output of these operations should be as if they were executed in some
sequential order. If you want to implement serializability, it is not the scheduler who should figure this out,
you would rather have some protocol do this automatically.

Interleaving could result in two kinds of conflicts: read-write conflicts and write-write conflicts. Read-write
conflicts occurs when the transaction reads, performs a write based on the value of the read data, but sees
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BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
x=0; x=0; x=0;
X=x+1, X=X +2 X=X+3
END_TRANSACTION END_TRANSACTION END_TRANSACTION

(@) (b) (c)
Schedule 1 Xx=0; x=x+1, x=0;, x=x+2; x=0; x=x+3 Legal
Schedule 2 x=0; x=0; x=x+1;, x=x+2; x=0; x=x+3; Legal
Schedule 3 X=0; x=0; x=x+1;, x=0; X=x+2; xX=x+3; llegal

Figure 16.10: Example of Serializable and Non-Serializable transactions.

that the data has been updated since the read took place. Write-write conflicts occur if one write operation
overwrites another write operation’s update. The scheduler should acquire the appropriate locks to prevent
both of the conflicts from happening.

16.5.2 Optimistic Concurrency Control

In optimistic concurrency control, there are no locks or lock manager. The transaction is executed normally
without imposing serializability restriction, but the transaction is validated at the end by checking for read-
write and write-write conflicts. If any conflict is found, all of the transactions involving in the conflict are
aborted. This design takes an optimistic view and assumes database is large and most of the transactions
occur on different parts of the database. Using locks adds unnecessary overhead and this design avoids this
by checking for validity in the end. It works well with private workspaces because the copies can be deleted
easily if a transaction aborts.

Advantages:

e One advantage is that this method is deadlock free since no locks are used.

e Since no locks are used, this method also gives maximum parallelism.
Disadvantages:

e The transaction needs to be re-executed if it is aborted.

e The probability of conflict rises substantially at high loads because there are many transactions oper-
ating at the same time and probability of them operating on same data block is high. Throughput will
go down when the load is high.

While there are some distributed services that use this approach, it is not widely used, especially by com-
mercial databases.
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Question: If two transactions that are conflicted are aborted and re-executed again, will it not result in
conflict again?

Answer: If they are executed at the same time again, they will conflict. The scheduler needs to randomize
execution time or something else so that they are executed at different times and conflict is avoided.

16.5.3 Two-phase Locking (2PL)

Pessimstic concurrency control requires the use of locks. One popular protocol for this is called two-phase
Locking (2PL), which is a standard approach used in databases and distributed systems. The scheduler
grabs locks on all of the data items the transaction touches and is released at the end when the transaction
ends. If a transaction touches an item and lock is grabbed, no other transaction can touch that data item.
The transaction needs to wait for lock to be released if it wants to operate on locked data.

Lock point

Growing phase p:q Shrinking phase

-

Number of locks

Time —»

Figure 16.11: Two-Phase Locking

Additionally, a constraint is imposed that if a transaction starts releasing locks, it cannot acquire it again.
This leads to two phases in each transaction as shown in Figure 16.11. During the growing phase, the
transaction acquires locks and once it releases a lock, the transaction cannot acquire any more locks. This
is shrinking phase as the number of locks the transaction is holding reduces. The transaction needs to make
sure that it will not touch any new data before releasing first lock as it cannot acquire a lock again.

A simpler approach is to completely avoid shrinking phase. As shown in Figure 16.12, Strict Two-Phase
Locking grabs locks and releases all of the locks at a time before committing. In this method, the transaction
will hold the lock until the end and does not release immediately as soon as it is done with the lock.

Question: Where is this locking mechanism implemented? Since the lock acquisition and release happens
in the transaction, shouldn’t it be the responsibility of the transaction manager?

Answer: The locking mechanism is implemented in the scheduler. Essentially, the transaction manager
itself notifies scheduler to grab the lock on a specific data block. The transaction manager works with the
scheduler to grab the locks.

(End of material covered in Lecture 16)
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Figure 16.12: Strict Two-Phase Locking

16.5.4 Timestamp-based Concurrency Control

This method handles concurrency using timestamps, in particular Lamport’s clock (logical clock instead
of physica clock). The timestamp is used to decide the order and which transaction to abort in case of
read-write or write-write conflicts. If two transactions are conflicted, the later transaction should be aborted
and the transaction that started early should be allowed to continue. For each data item x, two timestamps
are tracked:

e Max-rts(x): max time stamp of a transaction that read x.

e Max-wts(x): max time stamp of a transaction that wrote x.

« Read(x)
— If ts(T) < max-wts(x) then Abort T,
— Else
» Perform R (x)
» Max-rts(x) = max(max-rts(x), ts(T,))
« Write,(x)
— If ts(T )<max-rts(x) or ts(T)<max-wis(x) then Abort T,
— Else
» Perform W (x)
» Max-wis(x) = ts(T))

Figure 16.13: Read-writes using timestamps

Conflicts are handled using both these timestamps as shown in the Figure 16.13. If a transaction want
to perform read opearion on data item x, the last write on that data item is checked. The transaction
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timestamp is compared with the last write timestamp of the data. If the later transaction modified the data,
the transaction is aborted. If the read is successful, the read timestamp is updated by calculating max of
the previous timestamp and timestamp of current transaction as shown in the above figure.

In case of a write, if there is any more recent transaction that has read or modified the data item, the
transaction is aborted. If the write is performed, the timestamp of data item is updated.

Question: When you undo the transaction, do you undo the changes?
Answer: During abort, the state is restored to the original values using the undo log in case of Write-ahead
log and copies are deleted in private workspace model.

Question: How do we ensure the atomicity of read, write operations and the checks made in Figure 16.137
Answer: A lock is grabbed while performing all of the operations shown in the figure to prevent any other
transaction from making changes.

Question: When a transaction is aborted, is it just killed or rerun again?

Answer: There are two ways to handle this. One way is to inform the application that the transaction is
aborted and let the application rerun the transaction again. Another way is to make the transaction manager
retry the transaction.



